Math 128
Lagrange Examples - September 12, 2008

1. Example: Let $z=x y$. Find all maximums and minimums of z on the circle $x^{2}+y^{2}=1$.

We apply the technique of Lagrange multipliers.
First, we rewrite the constraint $x^{2}+y^{2}=1$ in the form $g(x, y)=0$, that is:

$$
x^{2}+y^{2}-1=0 .
$$

Second, we take the Lagrange multiplier function $F(x, y, \lambda)=f(x, y)+$ $\lambda g(x, y)$. In this case:

$$
F(x, y, \lambda)=x y+\lambda\left(x^{2}+y^{2}-1\right) .
$$

Finally, we find the critical points of this function F of three variables. Lagrange's Theorem says that the x and y coordinates will be the critical points of f. There are three derivatives:

$$
\begin{aligned}
& F_{x}=y+2 \lambda x \\
& F_{y}=x+2 \lambda y \\
& F_{\lambda}=x^{2}+y^{2}-1 .
\end{aligned}
$$

(Notice in passing that the third derivative is exactly the constraint that we started with!)

Finally, we set $F_{x}=F_{y}=0$, and work some algebra. Since $F_{x}=0$, we have

$$
2 \lambda x=-y,
$$

so unless $x=0$, we have $-\lambda=\frac{y}{2 x}$. Similarly, the second equation gives us $-\lambda=\frac{x}{2 y}$. Setting these equal, we get

$$
\frac{y}{2 x}=\frac{x}{2 y} .
$$

We multiply through by $2 x y$, which gives us

$$
2 x y \cdot \frac{y}{2 x}=y^{2}=2 x y \cdot \frac{x}{2 y}=x^{2},
$$

and in short, that

$$
x^{2}=y^{2}, \text { i.e. } x= \pm y
$$

but

$$
x^{2}+y^{2}=x^{2}+x^{2}=2 x^{2}=1
$$

and so $x= \pm \sqrt{2}$.
We recall that we did not eliminate the possibility that $x=0$ or $y=0$ above, when we divided. The possible critical points, and values of f are summarized in the following table:

x	y	$f(x, y)=x y$
0	± 1	0
± 1	0	0
$\sqrt{2}$	$\sqrt{2}$	2
$\sqrt{2}$	$-\sqrt{2}$	-2
$-\sqrt{2}$	$\sqrt{2}$	-2
$-\sqrt{2}$	$-\sqrt{2}$	2

We conclude that $f(x, y)=x y$ has a maximum value of 2 on the circle $x^{2}+$ $y^{2}=4$, obtained at the points $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$; and a minimum value of -2 , obtained at the points $(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2},-\sqrt{2})$.

2 Example: An open-top cardboard box has volume 4000. What are the height, width, and depth that minimize its surface area?

We set up the problem. Let h, w, and d be height, width, and depth, respectively. Then

$$
\text { Volume }=4000=h w d
$$

and

$$
S A(h, w, d)=w d+2 h w+2 h d .
$$

We apply the technique of Lagrange multipliers.
First: we rewrite the constraint in the form $h w d-4000=0$.
Second: we write down the function

$$
F(h, w, d, \lambda)=w d+2 h w+2 h d+\lambda(h w d-4000) .
$$

Third, we examine critical points of this function. Start by taking the derivatives

$$
F_{h}=2 w+2 d+\lambda w d
$$

$$
\begin{aligned}
F_{w} & =d+2 h+\lambda h d \\
F_{d} & =w+2 h+\lambda h w \\
F_{\lambda} & =h w d-4000 .
\end{aligned}
$$

We set $F_{h}=F_{w}=F_{d}=0$, and solve in each for λ. In F_{h}, we have

$$
\begin{aligned}
2 w+2 d+\lambda w d & =0 \\
\lambda w d & =-2 w-2 d \\
\lambda & =\frac{-2 w-2 d}{w d} \\
\lambda & =-\frac{2}{d}-\frac{2}{w} .
\end{aligned}
$$

In F_{w} and F_{d} we go through similar steps, and find that

$$
\begin{aligned}
& \lambda=\frac{-d-2 h}{h d}=-\frac{1}{h}-\frac{2}{d} \\
& \lambda=\frac{-w-2 h}{h w}=-\frac{1}{h}-\frac{2}{w}
\end{aligned}
$$

We have three things that equal λ now, and we set them equal to each other and solve. First: $-\frac{1}{h}-\frac{2}{d}=-\frac{1}{h}-\frac{2}{w}$. We cancel the $\frac{1}{h}$,s, and are left with $-\frac{2}{d}=-\frac{2}{w}$. Cancelling the -2 's and taking the reciprocal of both sides gives us that $d=w$.

A similar procedure is followed with $-\frac{1}{h}-\frac{2}{d}=-\frac{2}{d}-\frac{2}{w}$. We cancel the $\frac{2}{d}$'s, giving us $-\frac{1}{h}=-\frac{2}{w}$, and hence $w=2 h$.

Since $w=d=2 h$, and we get that $h w d=h \cdot 2 h \cdot 2 h=4 h^{3}=4000$, thus, that $(h, w, d)=(10,20,20)$ is a critical point. This critical points is, in fact, a minimum.

